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We analyze the effect of discreteness on properties and propagation dynamics of dark solitons in
the discrete nonlinear Schrédinger equation. We show that for small-amplitude nonlinear waves the
lattice discreteness induces novel properties of dark solitons, e.g., such solitons may be transformed
into brightlike dark solitons on a modulationally stable background. For large-amplitude dark
solitons we demonstrate that discreteness effects may be understood as arising from an effective
periodic potential to the soliton’s coordinate similar to the Peierls-Nabarro (PN) periodic potential
for (topological) kinks in the Frenkel-Kontorova model. We calculate the PN barrier (the height of
the PN potential) to a dark soliton numerically and, in the case of strong interparticle coupling, also
analytically, and discuss how the existence of the PN barrier may affect the mobility of dark solitons
in a discrete lattice. In particular, we predict unexpected types of discreteness-induced instabilities
for soliton-bearing models showing that, even being at a bottom of the PN potential well, the dark
soliton is unstable and it always starts to move after a series of oscillations around the potential
minimum. An intuitive picture for such a discreteness-induced nonlinear instability of dark solitons
is presented, and the novelty of this phenomenon in comparison to bright solitons is emphasized.

DECEMBER 1994

PACS number(s): 03.40.Kf, 63.20.Pw, 46.10.+z, 42.65.—k

I. INTRODUCTION

Solitons, coherent excitations of nonlinear physical
models, are usually analyzed as solutions of partial dif-
ferential equations. However, models describing micro-
scopic phenomena in solids are inherently discrete, with
the lattice spacing between the atomic sites being a fun-
damental physical parameter. For these systems, dis-
creteness effects may modify drastically the dynamics of
localized nonlinear excitations even in the framework of
the simplest models (see, e.g., Refs. [1-12]). Another way
to get discreteness effects strongly involved is to consider
a system of weakly coupled nonlinear elements, e.g., in-
teraction of many (N >> 2) optical fibers in a specially
designed periodic array of nonlinear waveguides (see, e.g.,
Refs. [13,14]).

Recently, interest in localized excitations in strongly
anharmonic lattices has been increased by the identifi-
cation of a new kind of strongly localized mode which
may exist in homogeneous (i.e., without impurities) non-
linear lattices [3]. These modes are the discrete analog
of the envelope solitons, with the unique property that
their width (i.e., spatial extension) is only a few lattice
spacings. One of the important features of these strongly
localized modes is the existence of the effective periodic
potential which affects free propagation of the modes
through the lattice. This periodic potential resembles the
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famous Peierls-Nabarro (PN) potential known in the con-
text of dislocation theory [15]. The existence of the PN
potential reflects the fact that translational invariance
in the system is broken by discreteness, and the trans-
lational (Goldstone) mode no longer exists. From the
physical point of view, the amplitude of the PN poten-
tial may be viewed as the minimum barrier which must
be overcome to translate the dislocation by one lattice
period. In the context of nonlinear localized modes in
lattice models, the PN potential was discussed in several
recent papers [6-8,10,12], and it was pointed out that
the existence of the PN barrier may explain the stability
properties of nonlinear modes: it seems that the stable
mode always corresponds to an extrema of the PN po-
tential [6,8,12].

An important question arises when one compares non-
linear modes in discrete lattices with those which may
be found in the continuum limit approximation, e.g.,
that described by an effective (continuous) nonlinear
Schrédinger (NLS) equation. As is known (see, e.g., Ref.
[16]), spatially localized modes may be understood as a
highly discrete version of the so-called bright envelope
solitons of the continuous NLS equation which exist un-
der the condition of modulational instability of the con-
tinuous wave (cw). However, it is known that when the
cw solution is modulationally stable, nonlinear localized
modes may exist on a stable cw background wave in the
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form of dark solitons.

Interest in studying dark solitons has recently in-
creased in connection with problems of nonlinear optics,
where dark solitons were shown to create perfect self-
induced optical waveguides to guide, steer, or switch one
optical beam by another (see, e.g., [17,18] and also the
recent review paper [19] and references therein). For a
controllable soliton-based optical switching it is necessary
to propose multiport nonlinear devices where more than
two optical modes interact. Thus, waveguide arrays seem
to be natural objects which may allow multiport beam
coupling, steering, and switching. As was shown in Ref.
[13], such arrays are described, in the main approxima-
tion, by the discrete NLS equation and, therefore, it is
important to analyze how the soliton-based guiding and
switching already observed in bulk materials [17] may be
extended to be used for such discrete systems. This will
be useful also to compare the properties of the soliton-
based switching based on dark solitons with those already
discussed for the case of bright solitons in waveguide ar-
rays [20-22].

It is the main purpose of the present paper to analyze,
within the framework of the discrete (nonintegrable) NLS
equation, the effects of discreteness and the influence of
the effective PN potential on propagation and properties
of dark solitons in discrete models. In particular, we
calculate the PN barrier (the height of the PN potential)
to a dark soliton and show analytically and numerically
how the lattice discreteness may affect the dark-soliton
mobility.

The paper is organized as follows. In Sec. II we dis-
cuss our model, showing that a rather wide class of phys-
ical problems may be reduced to the discrete NLS equa-
tion, the main object of our analysis in this paper. It
includes also a brief summary of (rather known) results
of the quasicontinuum theory of nonlinear waves in lat-
tices which may describe dark solitons using the so-called
discrete-carrier-wave approximation. The main results of
our analysis of the PN potential are presented in Secs. ITI
and IV. Section III includes the calculation of the PN bar-
rier for a dark soliton, numerically and analytically. In
Sec. IV we discuss how the lattice discreteness may affect
the dark-soliton mobility and we predict a novel type of
discreteness-induced instability in soliton-bearing lattice
models. Finally, Sec. V concludes the paper.

II. DISCRETE SOLITONS AND
QUASICONTINUUM APPROXIMATION

A. Model

The main object of our analysis is the discrete (nonin-
tegrable) version of the NLS equation, which we write in
the form

.dprn 2,

"'7 + D(¢n+1 + 1/’7.—1 - 21/)1:) + Al"l’n‘ 1/’11. - 0 (1)

Equation (1) appears in nonlinear problems of very dif-
ferent physical origin. For example, it describes the self-
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trapping phenomenon in a variety of coupled-field theo-
ries where the discreteness effects are important, from the
self-trapping of vibron modes in bimolecules (see, e.g.,
Ref. [23]) to the dynamics of linear arrays of vortices (see,
e.g., Ref. [24]). Another application of the model (1) has
been mentioned in the Introduction: The discrete NLS
equation (1) describes the interaction of TE modes of the
electromagnetic field in an array of nonlinear waveguides
(see, e.g., Refs. [13,14,20-22)).

The discrete NLS equation (1) may be also derived in
a one-frequency approximation from the standard (dis-
crete) model a of one-dimensional chain of particles sub-
jected to a nonlinear (on-site) substrate potential,

B

2
mw, a
—2u2 ?l + Zun’ (2)

U(u,) = 5 Up + U

where u, is the displacement of the nth particle from
the equilibrium position, m is the particle’s mass, wp is
the frequency of small-amplitude (on-site) vibrations of
a particle in the substrate potential, and a and 3 are the
(cubic and quartic) anharmonicity parameters of the po-
tential. Analyzing slow temporal variations of the wave
envelope in such a chain and looking for solutions in the
form

Up = G + Ppe W0t 4 £ e 20t L cc, (3)

where c.c. stands for complex conjugate, we finally ob-
tain two algebraic relations for the functions ¢, and &,,
a2

2a 2
¢n—_;§|¢n| ’ En- 3(4)0 no

and the discrete NLS equation for the first harmonic v,
in the form (1) where the coefficients D and A are ex-

pressed through the parameters of the linear and nonlin-
ear interactions (see [25]),

o (e o). @

D=
2mwg’ 2mwg \ 3w?

and k; characterizes interaction of nearest neighbors in
the lattice. The basic approximation used to derive the
discrete NLS equation from the model of a discrete chain
with the on-side potential (2) is the assumption mw? >
4k, which for lattices means that the linear spectrum
band, which is proportional to y/kz/m, is rather narrow
in comparison with the spectrum gap wy, i.e., discreteness
effects are strong enough.
Equation (1) has an exact cw solution,

Pn(t) = Tee’®, 0= gna — @t, (5)

where the frequency @ obeys the nonlinear dispersion re-
lation, @ = 4D sin*(§a/2) — A|¥|2. It is known (see, e.g.,
Ref. [5]) that the modulational instability of the cw so-
lution (5) depends on the carrier wave number § and the
cw mode becomes unstable provided

Acos(ga) > 0. (6)
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The result (6) determines the condition for spatially lo-
calized modes to exist. However, if Acos(da) < 0, the
cw solution (8) is modulationally stable, and nonlinear
localized modes may be expected to exist in the form of
dark solitons.

B. Quasicontinuum approximation

The standard way to analyze bright and dark solitons
in a lattice is to use the so-called discrete-carrier-wave ap-
proximation. This approach considers the cw background
(carrier) wave as a solution of the lattice equations, but
localized modes (e.g., dark solitons) are treated in the
continuum approximation. In that case it is naturally
assumed that the soliton’s width is much larger than the
lattice spacing, and the only way for the discreteness ef-
fects to come into the play is to renormalize the coeffi-
cients of the effective (continuous) NLS equation.

Following that idea we look for a solution of Eq. (1)
in the form

Pn(t) = ¥(n,t) exp(iQan — iQt), (7)

where it is assumed that Q and 2 obey the linear disper-
sion relation, = 4D sin*(Qa/2). Expanding the slowly
varying envelopes ¥(n=+1,t) into a Taylor series, we come
to the continuous NLS equation

or  _ov 1, 0¥ 2
where
_dQ .
Vy = a0 - 2aD sin(Qa) (9)

is the group velocity and the parameter A,

a0 _
dQz ~

describes the group-velocity dispersion of the waves. The
condition (6) simply means that the nonlinearity and dis-
persion terms are of the same sign; this is the necessary
condition for modulational instability described by the
NLS-like models. In the case AA < 0, i.e., Acos(Qa) < 0,
the continuous NLS equation (11) has an exact solution
describing a dark soliton of an arbitrary amplitude. This
means that, for A > 0, dark solitons exist if cos(Qa) < 0,
i.e., for high-frequency oscillations, when adjacent par-
ticles move out of phase. But for A < 0 low-frequency
oscillations are modulationally stable, and dark-solitons
are possible as hole excitations in the background oscil-
lations when the adjacent particles move in phase.

For A\ = —|A| < 0 the dark-soliton solution of Eq. (8)
has the well-known form

A=2 2a®D cos(Qa), (10)

¥(z,t) = Uo {Btanh Z + iA} e *HI¥5t, (11)
where

Z = UoB/N/A(z — Wt) (12)
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and
W=V, +¥oA, A*+B2=1. (13)

As a matter of fact, the parameter A characterizes the
velocity of the dark soliton in the reference frame moving
with the group velocity V. However, in two particular
cases, @ = 0 and Q = =, the background wave is at
rest [see Eq. (9)] and the parameter A describes the
velocity of the dark soliton itself. The velocity of the
dark soliton determines also its “contrast,” i.e., a ratio of
the minimum intensity of the soliton to the background
(maximum) intensity. The simple relation

BZ
coshzZ) ’ (14)

o = v (1-

where Z is defined in Eq. (12), shows that the parameter
B = +/1 — A? has a sense of the dark-soliton contrast;
the dark solitons moving faster have smaller amplitude.

The results presented above are, generally speaking,
similar to those already established for other lattice mod-
els supporting soliton propagation and, as a matter of
fact, they do not take into account the effect of discrete-
ness on the dark soliton. The lattice origin of the model
(1) manifest itself in Eq. (8) only in the explicit expres-
sions for the group velocity V; and the group velocity
dispersion A, and these parameters are mainly responsi-
ble for conditions for dark solitons to exist.

II1. EFFECTS OF LATTICE DISCRETENESS
A. Small-amplitude (“gray”) solitons

The simple way to analyze the effect of discreteness on
the propagation dynamics and properties of dark solitons
is to use the so-called small-amplitude limit. In the case
of small amplitudes the solitons are rather wide [see Egs.
(11)—(13), where the small-amplitude limit corresponds
to the condition B? « 1], and the discreteness effects
may be analyzed by taking into account the next-order
terms in the Taylor expansion,

O 2. 0% a*D 8%y 2

= b ATl A ) =0, 15

iar TOPg02 + T3 gga ~ PIWIY (15)
where z = na is considered as a continuous variable.

Looking for a solution of Eq. (15) in the form
Y(z,t) = [V + a(x, t)] exp {—i|A| L3t + id(z,t) }, (16)

and assuming that the condition of small amplitude is
always fulfilled, a < ¥y, we may obtain a system of two
coupled equations for the functions a and ¢ (see details
in Ref. [26]). That system may be analyzed by applying
the asymptotic expansion method, i.e., using the power-
series expansions

a=¢€ag+eta +--, dp=epo+eEpr+---, (17)

and “slow” variables,
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T=6€% z=c¢(x—Ct), (18)
where e is a small (scaling) parameter, and C is the phase
velocity (“sound speed”) of linear waves propagating on
the background of the amplitude ¥y,

C? = 2|\|a’D¥2. (19)

As a result, in the lowest order in the small parameter
€ we obtain the well-known Korteweg—de Vries equation
for the soliton amplitude ao,

dag dag 83ag
Skt TN _g,=2 =0, 20
2 or +Giao 8z 27923 (20)
where the variables z and 7 are introduced above, the
coefficients G; and G, are defined by the relations

|2
G1 = 12'/\|02D\I’0, Gg = a4D (1 - %2) k] (21)

and the phase ¢ is determined by the equation

0¢o 4%
—37 = C agp. (22)

Equation (20) has a soliton solution
ao(z,7) = —(12u2G32/G1) sech®[u(z — Wr)],  (23)

where W = —2u2G,/C is the soliton velocity in the ref-
erence frame moving with the sound speed C, and p is an
arbitrary parameter which defines the soliton amplitude.

The results presented above show how the parameters
of a dark soliton in this (small-amplitude) limit are mod-
ified by discreteness. In particular, as clearly seen from
Egs. (21) and (23), increasing the amplitude of the cw
background ¥, causes the effects produced by discrete-
ness more and more important because in this case the ef-
fective interaction between particles in the lattice (which
is proportional to D/|A|¥3) becomes weaker. For

|A|¥3 > 6D (24)

the soliton (23) may change the sign of its amplitude
transforming into an antidark (or brightlike dark) soli-
ton on a cw background. The transformation of a dark
soliton into an antidark soliton due to higher-order (in
fact, third-order) dispersion contribution was discussed
in Ref. [27]. The possibility of existence of antidark soli-
tons in the discrete NLS was observed numerically in Ref.
[28]. However, the authors of Ref. [28] tried to analyze
this phenomenon in the region of the parameters when
the condition (24) is not fulfilled. Our numerical simula-
tions of the dynamics of the discrete NLS equation with
the soliton given by the formulas (16)—(18) and (21)—(23)
as an initial condition shows that the antidark soliton is
stable and its propagation does not lead to any sufficient
radiation. In Fig. 1 we present the dynamics of such a
soliton on the background ¥y = 2.0 (not shown in the
picture) for the standard choice of the lattice parame-
ters, D = 1.0 and a = 1.0. Similar to the case of the
third-order dispersion [27], the antidark soliton propaga-
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FIG. 1. Dynamics of an antidark pulse supported by the
lattice discreteness. Initial conditions (16)—(23) at ¥o = 2.0,
D =1.0, and a = 1.0.

tion looks radiationless and the soliton shape is preserved
due to a balance of dispersion effects and nonlinearity, as
is well known for dynamical solitons of the Korteweg—de
Vries equation.

Thus, even in the small-amplitude limit one observes
that discreteness may drastically modify the properties
of a dark soliton and, in particular, change the sign of the
soliton’s amplitude due to a contribution of higher-order
dispersion effects.

B. Peierls-Nabarro barrier to a dark soliton

The importance of discreteness on the dark-soliton
propagation in nonlinear lattices may be clearly seen
when the velocity of the soliton relative to the back-
ground plane wave is small. This is the case of large-
amplitude dark solitons, which have the intensity at the
minimum close to zero. In the continuum approximation
this solution is given by the simple analytical expression
[cf. Eq. (14)]

P(z,t) = ¥y tanh l:\llo %(z — :vo)] exp { —i|A| T3t} .

(25)

Trying to use this solution as a continuum limit of a dark
soliton on a lattice, one notes that the resulting parti-
cle configuration representing the solution (25) depends
on the position of the soliton coordinate zo. Thus, the
solution (25) on a lattice presents a family of different
dark-soliton solutions which are characterized by the pa-
rameter o and not connected to each other by a simple
translation. To analyze the effect of discreteness on the
stationary dark-soliton mode, we look for the stationary
solution of Eq. (1) in the form
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Yn = Wo fn exp (—i|A|T3t) (26)

where it is assumed that the real function f, does not
depend on time [cf. Eq. (25)]. Then, for the function f,
the following nonlinear difference equation holds:

K(fnt1+ fao1 = 2fa) = (f2 = 1) fn, (27)
where
D
K = .
P (25)
Here we assume that A = —|A| < 0, i.e., the dark-soliton

modes are considered to be excited on a background con-
sisting of in-phase particle oscillations. As a matter of
fact, the consideration presented below may be easily ex-
tended to cover the case of high-frequency oscillations
when dark-soliton modes may exist on a background con-
sisting of out-of-phase particle oscillations; this is valid
for A > 0. Indeed, we note that Eq. (1) allows the trans-
formation

Yu(A > 0) = (=1)"Y, (A < 0)e 4Dt (29)

where 1,(A < 0) and ¥,(A > 0) stand for solutions of
Eq. (1) for A < 0 and A > 0, respectively. In this second
case, looking for the stationary solution in the form

PYu(t) = (—1)" Vo fr exp [~i(4D + /\\Ilg)t] , (30)

we find that the function f, satisfies again Eq. (27).
Note, however, that the energies of low-frequency (E_)
and high-frequency (E;) modes are connected by the
simple relation

E, =4KN - E_, (31)
where
N=>"f, (32)
and
o= 3 {KGua gt 50217 69)

To find the form of localized solutions of Eq. (27) de-
scribing the profile of a dark soliton on the lattice, we
solve Eq. (27) assuming the boundary conditions similar
to those of the continuum limit case [see Eq. (25)], i.e.,
f: > 1forn > N (N is large enough), and also the
symmetry condition, e.g., f, = —f_,. However, in the
discrete case the center of such a solution may vary in the
interval 0 < z¢ < a, a being the lattice spacing. In the
analogy to the case of bright solitons [6], we analyze two
special cases of stationary solutions when the dark soliton
is centered either at a particle site or between the near-
est particle sites [see Figs. 2(a) and 2(b)]. Indeed, when
moving along the chain, a dark-profile mode changes its
position and, correspondingly, its structure. Thus, ex-
actly as in the case of bright solitons, two stationary
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FIG. 2. Profiles of low-frequency (A < 0) dark solitons in
the lattice with K = 0.5, when the stationary mode is cen-
tered on a site (a) and between two neighboring sites (b).
Note that in each case the background shows the in-phase os-
cillations of neighboring particles as one would expect for the
acoustic modes.

modes shown in Figs. 2(a) and 2(b) (i.e., one centered
at the particle site and the other one centered between
the sites) may be viewed as those related by translations
of 1/2 lattice spacing and, therefore, they both “occur”
as two “states” of a single mode translating through the
lattice. Our present study confirms that these two sta-
tionary modes can indeed be viewed as belonging to a
single dark-profile mode and that the difference in their
energies may be attributed to the height of an effective
periodic potential generated by the lattice discreteness.
This potential resembles the PN potential known in the
context of dislocation theory [15]. As has been mentioned
in the Introduction, the existence of the PN barrier re-
flects the fact that translational invariance is broken by
discreteness, and the translational (Goldstone) mode no
longer exists. From the physical point of view, the ampli-
tude of the PN potential may be treated as the minimum
barrier which must be overcome to translate the disloca-
tion by one lattice period. In the context of nonlinear
localized modes in lattice models, the PN potential has
been recently discussed by Kivshar and Campbell [6] (see
also Refs. [7,10,12]).

Analogously to the approach used in [6], we define two
stationary configurations [see Figs. 2(a) and 2(b)]. In
the first case, which we call the A mode [see Fig. 2(a)],
the mode satisfies the conditions fo =0 and f; = —f_;.
The corresponding energy in this case may be written as

Eq= % + 22 {K(fi+1 - i)+ %(fz? - 1)2} - (34)
=1
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In the second case [the so-called B mode; see Fig. 2(b)]
the mode is determined by the condition f; = —fo and
it has the energy

- 1)2} .

(35)

Ep=K(2f1)? +2) {K(.fi+1 - f:)* + %(f?
i=1

Knowing the value of the two first displacements fo and
f1, we can find the displacement of the next particle from
the relation Eq. (27). Therefore, using a simple iteration
procedure for the only unknown value f; and applying
the conditions f,_1 < fn, we can find the unique value
of f leading to the localized dark-soliton solution on the
lattice. The particular cases of dark-soliton profiles at
K = 0.5 for low-frequency oscillatory background (A <
0, in-phase oscillations) and high-frequency oscillatory
background (A > 0, out-of-phase oscillations) are shown
in Figs. 2 and 3, respectively.

If the difference between the energies of the A and B
modes is nonzero, the dark soliton cannot move freely
through the lattice. It remains pinned, and the energy
difference

EPN = |EA—EB| (36)

has the sense of the pinning energy. The value (36) de-
fines the amplitude of the PN barrier to the dark soli-
ton. This value may be easily calculated numerically as
a function of the coupling constant K (see Fig. 4).

It is not difficult to obtain an analytical estimation of
the value (36) in two limiting cases: the quasicontinuum

A - MODE
1.0 ® °
(a) 00 - — — — —
-1.0 .
B - MODE
1.0 TS . P

® 00

-1.0

T8 T T T T
-5 -4 -3 -2 -1 0 1 2 3 4 5

FIG. 3. Profiles of high-frequency (A > 0) dark solitons in
the lattice with K = 0.5, when the stationary mode is cen-
tered on a site (a) and between two sites (b). Note that in this
case the background shows out-of-phase oscillations of neigh-

boring particles corresponding to the structure of opticlike
modes.
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FIG. 4. The Peierls-Nabarro barrier to a dark soliton in
the discrete NLS equation (1) as a function of the coupling
parameter K = D/|A|¥3, which depends on the value of the
background intensity. Solid line with stars: results of nu-
merical calculations; dashed line: analytical results given by
Eq. (41). Note that good agreement between analytical and
numerical results may be already observed for K > 0.5.
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approximation (K > 1) and the highly discrete limit
(K < 1). In the first case, to take into account dis-
creteness of the lattice in a simple way, we present the
dark-soliton solution in the form

fn = tanh[B(an — zo)], (37)
where B = 1/v/2Ka <« 1. The discrete energy defined
by Eq. (33) is a function of the position of the soliton

center, xo, and after simple transformations it may be
written as

1
E= Z cosh*[B(an — )] (38)

n=—oo

To calculate this quantity we use the well-known Poisson

formula (see, e.g., Ref. [7]) to transform the sum into the
integral

E= /wcosh ([(11336({:)—:::0)]{ +2Zcos( "”)}

(39)

In the case B >> 1, we take into account only the most
significant terms, thus arriving for large values of K at
the expression

E~ 2\/32K

1+8V2K3r* exp(—m*V2K)

X cos (M)] .
a

(40)
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Therefore, in the framework of this “quasidiscrete ap-
proximation,” the effective energy of the dark soliton is
an oscillatory function of the soliton position o, and ex-
tremum points correspond to stationary configurations,
i.e., zg = 0, to the A mode shown in Fig. 2(a), and
zo = a/2, to the B mode shown in Fig. 2(b). From Eq.
(40) we obtain the value of the PN potential barrier as
7 42
EPN = IEA —EBI = 2—13——1—{—6
which is exponentially small for large values of K. The
function (41) is shown in Fig. 4 by a dashed line. Note
the very good agreement between numerical results and
the analytical formula (41) even for K ~ 1. For instance,
at K=1.0, from Eq. (41) we find epy ~ 3.61 x 1073 while
its exact numerical value is ~ 3.66 x 1073, In the limit
K — 0, the function e py (K) tends to a finite value which
in dimensionless units equals 1/2. This result has very
simple physical explanation: in the limit of weakly inter-
acting particles the stationary structures given by the A
and B modes [shown in Figs. 2(a) and 2(b), respectively]
differ in the energy of a single-particle oscillation which,
as follows from Egs. (34) and (35), is just 1/2 in dimen-
sionless units adopted in Eq. (27). Additionally, the PN
barrier may be easily calculated analytically also for the
case of weak coupling as an expansion in small K.
Finally, we would like to mention that the similar anal-
ysis is also valid for high-frequency dark-soliton modes.
In fact, as has been mentioned before, all the configura-
tions for stationary dark-profile modes are defined by the
same functions through the relation (30). Additionally,
the energies of high- and low-frequency modes are con-
nected in a similar way, as may be seen from Eq. (31). A
more detailed analysis of high-frequency modes and their
discreteness-induced dynamics is presented below.

xp(—wz\/ﬁ), (41)

IV. HOW DOES A DARK SOLITON SENSE THE
PN BARRIER ?

A. Simplest collective-coordinate analysis
1. Low-frequency modes

The stationary modes analyzed above correspond to
extrema points of the effective PN potential. It is clear
that such stationary points may be minima, maxima, or
saddle points in the effective phase space of the discrete
dynamical system (1). To analyze the stability proper-
ties of the localized modes in the vicinity of a stationary
point, we should consider the full dynamical system (1).
Because the model (1) is not integrable, such an analysis
is rather difficult to carry out even in the limit of small
oscillations around the stationary point and one of the
possible ways is to use direct numerical simulations to the
problem. Another way is to use the so-called collective-
coordinate approach, introducing an effective ansatz to
model the localized solution and treating its parameters
as functions of time. This method is one of the versions
of the so-called variational approach, with the main dif-
ference in the ansatz, which is in this case very close
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to the known exact localized solution of the problem in
the continuum approximation. The variational approach
is known to be the simplest method to describe general
features of the nonlinear dynamics with particlelike exci-
tations (see, e.g., Ref. [29] and references therein). At the
same time, this is not a rigorous method, and for specific
effects the results are rather sensitive to the successful
choice of trial functions. The optimum is to combine
such a variational approach with numerical calculations
to obtain a rather realistic picture of the system dynam-
ics.

First, we analyze the case of a dark soliton excited on
a modulationally stable in-phase background oscillation.
This case is realized for A = —|A| < 0. We start from the
discrete NLS equation [cf. Eq. (1)]

Z% + K("/’rﬂ-l + Yp_1 — 2’!/)n) - (l¢n|2 — 1)1/)11 =0,

(42)

where we have made a simple change of variables, ¥, —
¥ exp(—i¥3t), and introduced the parameter K defined
in Eq. (28). Equation (42) may be viewed as a Hamil-
tonian model defined through the relation i(dy,/dt) =
0H/6v},, where H is the system Hamiltonian [cf. Eq.

(39)
H = 3 Kl =l + a2 - 17} (a9)

If the solution %, is a slowly varying function of n, one
may expand %n,4+; into a Taylor series recovering the
Hamiltonian of the continuous NLS equation.

Assuming the discreteness effects are small, we seek
the approximate dark-profile mode of the discrete model
(42) in the form

PYn(t) = Btanh[B(na — zo)] + 14, (44)

where the parameters A and B are connected by the re-
lation A%+ B? = 1 following from the asymptotic behav-
ior of the solution for n — *oo. The parameters A(t)
and xo(t) are taken as collective variables, zq is the soli-
ton’s coordinate, and A is connected with the phase jump
across the soliton. Substituting Eq. (44) into Hamilto-
nian (43) and using, as above, the Poisson formula (see,
e.g., Ref. (7] and Eqgs. (38) and (39)], we calculate the
effective Hamiltonian corresponding to the solution (44),

H = %Bs + B3epn(aB) cos (27?0) , (45)
where
T dz 27z
€pN($) = [m mcos (T) . (46)

As a matter of fact, after introducing dimensionless vari-
ables, 2Ka? = 1, we come to the results given by Eq.
(38) and (39). However, the important difference be-
tween Egs. (45), (46) and (38), (39) is that the parame-
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ter B in (45), which is equal to 1/av/2K in Eq. (39), is
treated now as a dynamical variable.

To obtain correctly the evolution equations corre-
sponding to the Hamiltonian (45), we should define the
corresponding conjugated variables, the generalized co-
ordinate and momentum. If we choose =y as a general-
ized coordinate, it may be checked that the conjugated
momentum P coincides with the renormalized field mo-

mentum of the continuous NLS equation calculated as
(see details in Ref. [30])

P—i ou” _ 8 — argu
T2 "az “az g

If we introduce the soliton phase angle 6 through the
relations B = cosf and A = sin6, the momentum (47)
takes the form [30]

+oo
(47)

—00

P = —[sin(20) + 26). (48)

The Hamiltonian equations of motion for the conju-
gated variables z¢ and P follow from the well-known re-
lations

dzg 8H dP OH
—_—= —_— — — = -——— 9
@ — et =5, G ={HP} 52y’ (9

where {z¢, P} = 1, and { } stands for the Poisson brack-
ets. In the limit of rather weak discreteness effects we
may neglect the second (small) term in the equation for
zo and finally obtain the system of equations

d:l?o .

— = 50

o~ sin 0, (50)
df by . [ 27z
—_— = . 1
7 ™ cos @ epn(acosf)sin ( ” ) (51)

Equations (50), (51) immediately indicate that the A
mode (i.e., that corresponding to zo = 0 when the soli-
ton’s center is located at a particle site) must be stable,
whereas the B mode (i.e., that corresponding to o = a/2
when the soliton’s center is located between the neigh-
boring particle sites) must be unstable [31]. The fre-
quency of small-amplitude oscillations Q%) around the
point ¢ = 0 is given by the result,

Wy = rern(1/VE). (52)

2. High-frequency modes

The collective-coordinate analysis presented above
may be easily reproduced for the case of high-frequency
dark-profile modes, when the dark soliton is excited on
a modulationally stable background consisting of out-of-
phase particles oscillations, and this is the case of A > 0.
Introducing the function ¢,, through the relation

Y = (_1)”Wneiwmt; (53)
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where w,,, = 4D + A2, and the parameter K defined in
Eq. (28), we come to the equation for the function ¢,,,

.dpn
1% - K(‘pn+1 + on—1— Z‘Pn) + (“pnlz - 1)‘pn =0.

(54)

Equation (54) looks very similar to Eq. (42) and its dark-
soliton solution has the form [cf. Eq. (44)]

¢n(t) = Btanh[B(na — z¢)] — iA4, (55)

where the parameters A and B are connected again by
the relation A%2 + B2 = 1, so that A and z¢ may be se-
lected as two collective variables. As a result, the system
Hamiltonian H and the field momentum P (which is used
as a generalized variable) differ from Eqgs. (45) and (48)
just in the sign in front of both expressions, so that the
stability properties resulting from the motion equations
do not change: the A mode corresponding to zo = 0 is
predicted to be stable, whereas the B mode (z¢ = a/2)
is unstable.

The collective-coordinate analysis presented above is
based on the simplest ansatz (44) or (55). In fact, such
an ansatz fixes a relation between the pulse amplitude
and width, restricting the quantity of independent vari-
ables. Such a restriction may affect the stability prop-
erties of the localized modes, so that we need to check
these predictions by direct numerical simulations.

B. Numerical results

After analyzing the stationary configurations related
to extrema of the effective PN potential and their stabil-
ity, one may naturally ask how the PN potential affects
the dark-soliton dynamics. Intuitively, it is clear that the
main effect produced by an effective discreteness-induced
inhomogeneity to the dark soliton [see, e.g., the result
given by Eq. (45) for the soliton energy in the quasicon-
tinuum approximation] is the pinning of the soliton at
certain places in the lattice (corresponding to minima of
the PN potential). Nevertheless, one should expect that
if the soliton is able to overcome the PN barrier, it will
start to move across the lattice. In the framework of this
picture the B mode (which is predicted to be unstable)
does not require any initial velocity for the soliton to start
such a motion, whereas the threshold effect must be ob-
served for the A mode, which in the collective-coordinate
phenomenology corresponds to a minimum of the effec-
tive PN potential.

To check this qualitative picture we have analyzed the
effect of lattice discreteness numerically starting from a
slightly “excited” state corresponding to a dark soliton
with a small initial velocity (i.e., small value of the pa-
rameter A). The latter simply means that, taking into
account the results of the continuum limit approach given
by Eq. (11), we start from the profile approximated by
Eq. (44) but with A # 0 [see Eq. (11)]. As has been
mentioned above, the parameter A defines the initial ve-
locity of the dark soliton.

We always start at the middle of the chain consisting
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of 101 particles, but with the soliton’s coordinate z, se-
lected in the region 0 < xo < a/2. Figures 5(a) and
5(b) present the case of the B mode, i.e., that with the
soliton’s center selected just at the middle between the
neighboring particle sites. As may be seen from Fig.
5(b), this stationary state is unstable in the sense men-
tioned above [31] because the minimum initial velocity
(A =1073 in Fig. 5) causes the soliton to move through
the lattice. The same behavior is observed for the zero
initial velocity but at z slightly shifted from the equilib-
rium position, i.e., zg = a/2 + £, where £ < a. We also
checked the stability properties of the high-frequency B
mode [with out-of-phase oscillations of the neighboring
particles in the lattice, see Fig. 3(b)] and we observe ex-
actly the same behavior as for the low-frequency in-phase
dark solitons. Thus, the phenomenological picture based
on the effective PN potential to the soliton’s coordinate
correctly predicts discreteness-induced instability of the
B modes, i.e., those centered between the neighboring
particle sites in the lattice.

A similar numerical investigation has been carried out
for the A modes by using two types of initial conditions.
In the first case, the soliton’s center is fixed at the site
n = 50 but its initial velocity A is varied. In the sec-
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ond case, the initial velocity is chosen to be zero but the
soliton’s position is varied in the interval 0 < zq < a/2.
The final pictures given by these two types of initial con-
ditions are very similar, so that below we discuss the
results corresponding to the initial conditions of the first
type.

If the soliton’s velocity is not zero and it is above a cer-
tain threshold value A., [i.e., Ac, = 0.036 at K = 1.0 or
A = 0.06 at K = 0.8], the soliton dynamics is likely the
same as in the case of the unstable B mode. The soliton
starts to move along the lattice; however, some (small)
part of the energy is emitted as a transition radiation.
This type of the soliton’s dynamics is consistent with the
physical picture given by the PN effective potential. As
a matter of fact, for rather large values of its velocity the
soliton may escape the potential well, and the threshold
value of the soliton’s velocity may be approximately esti-
mated from the simple relation epy = FEp;n, Where epy
is the PN barrier and Ej;, is the kinetic energy of the
effective particle in the collective-coordinate approach.

When the soliton’s initial velocity is selected below the
threshold value A.., we observe a very interesting phe-
nomenon. During a certain time the dark soliton oscil-
lates with the frequency close to the value defined by Eq.

240
180
s
120 =
60 FIG. 5. Spatiotemporal dynamics of a
dark soliton (a) and the corresponding con-
0 tour plot (b) for the case when the soliton’s

center is selected between the neighboring
particles sites, i.e., here between n = 50 and
n = 51 (the B mode). This stationary state
is obviously unstable because even the mini-
mum value of the initial velocity, A = 1073,
gives rise to the soliton motion.
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(52), but the amplitude of such oscillations gradually in-
creases so that, as soon as it reaches the value a/2, the
soliton escapes from the potential well. Figures 6 and
7 display two types of the dark-soliton dynamics in the
lattice when the initial soliton’s velocity is selected below
the threshold value. In the first case, shown in Figs. 6(a)
and 6(b), after a series of oscillations the dark soliton es-
capes to the right, whereas in the second case, it escapes
to the left. The difference in the resulting dynamics of
the dark soliton is caused by different initial parameters
selected for simulations. In fact, when we fix all other
parameters and gradually increase only the one, either
the initial soliton’s velocity or the value of the relative
soliton’s position (in respect to the PN minimum), the
propagation direction of the escaping soliton periodically
changes. In Figs. 8 and 9 we present such an oscillating
dependence measuring the relative position of the soli-
ton center at t; = 600 for K = 1.0 and at ¢; = 200 for
K = 0.8, respectively. The relative position is defined as
the value AN = N — N(0), where N is the number of
the particle site where the soliton minimum is situated at
time tx, and N(0) = 50. Only several points presenting
such oscillating dependencies are shown in Figs. 8 and 9
(especially in Fig. 9, where the solid line is defined just to
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guide the eye), but the transitions between the soliton’s
escapes to the right and to the left are very sharp, and
there are no points lying on the line AN =0, i.e., we do
not observe trapped states of a dark soliton in the lattice.
Thus, unlike the prediction which follows from the simple
collective-coordinate analysis, the dark-profile soliton in
the lattice seems always unstable.

It seems to us such an instability (which has no analog
in the theory of spatially localized modes in lattices) orig-
inates from an interplay between the soliton’s width and
amplitude. In the continuum case these two parameters
are connected by a simple relation and a change in one of
them causes a change in the other. In a discrete lattice,
when the coupling between particles is rather weak, dark
solitons may exist being localized only on a few particles,
so that the soliton’s width is not strongly connected to
the soliton’s amplitude. When we start from an approxi-
mate solution originated from the continuous approxima-
tion, the dark-profile mode tries to adjust the width and
amplitude of the solution to create a mode close to an ex-
act solution of the lattice equation. Such an adjustment
causes periodic oscillations of the effective PN barrier.
As a matter of fact, the similar effect must be observed
for bright solitons as well, but in the case of dark solitons

200
150
w
100 2
-
FIG. 6. The same as in Figs. 5(a) and
S0 5(b) but for the soliton’s center selected at
n = 50 (the A mode). The initial velocity
0 is A = 0.02. As clearly seen from the con-
tour plot (b), after a few oscillations the dark

soliton escapes from the potential well and it
starts to move to the right.
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FIG. 7. The same as in Figs. 6(a) and
6(b) but for A = 0.01. In this case many
more oscillations are observed and finally the
dark soliton escapes to the left.
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FIG. 8. The resulting picture of the dark-soliton instabilities at K = 1.0 presented as the relative position of the soliton at
tx = 600 vs the soliton’s initial velocity. The curve shown by open circles corresponds to the B mode; there is no threshold for
this mode to move. The oscillating dependence corresponds to the B mode. Above the threshold value of the soliton’s velocity
the soliton dynamics is similar to that for the A mode, i.e., the soliton always moves to the direction selected by the initial
conditions. However, below the threshold velocity the soliton may escape to the right or to the left, depending on values of
either the initial soliton velocity or position.
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8, but at K = 0.8 at t, = 200.

0.04 0.06
INITIAL VELOCITY

0.00 0.02

any change of the soliton’s amplitude immediately causes
a corresponding change in the soliton’s velocity, and this
effect is absent for the bright solitons which in the quasi-
continuous limit have the amplitude and velocity as two
independent parameters. Therefore, oscillations of the
shape of the effective PN potential cause growing oscil-
lations of the soliton itself similar to the effect of para-
metric resonance, and finally this helps the soliton to
escape from the potential well. As a result, even being at
a bottom of the effective PN potential, the dark soliton
is dynamically unstable and this instability seems to be
caused solely by discreteness effects.

V. CONCLUSIONS

In conclusion, we have analyzed effects of discreteness
on dark-profile localized modes in the lattice NLS equa-
tion that arises naturally when one studies the analog of
envelope solitons in models of solids describing dynamics
of a chain of particles on a substrate (on-site) nonlinear
potential. In the case of small-amplitude dark solitons,
when the width of the soliton is much larger than the
lattice spacing, the lattice discreteness may drastically
modify the dispersion properties of waves and this effect,
as has been shown in the present paper, may give birth to
antidark solitons which propagate as bright solitons on a
modulationally stable background. Such solitons may be
analyzed in the framework of an effective Korteweg—de

0.08 0.10

Vries equation by means of asymptotic methods.

In the case when the soliton’s width is not very large,
the effects produced by discreteness to the dark soliton
may be understood as arising from an effective periodic
potential similar to the well-known PN potential for topo-
logical kinks in the Frenkel-Kantorova model. This PN
potential may affect the mobility of a dark soliton in the
sense that one should overcome a certain energy bar-
rier, the PN barrier, to get a dark soliton propagating
relatively to the background. We have calculated the
PN barrier numerically and analytically, using in the lat-
ter case a strong-coupling approximation and applying a
Poisson formula. However, numerical simulations display
additional instabilities of the dark soliton. Even being at
the bottom of a PN potential well, the initially excited
dark soliton starts to move to the right or to the left
after a series of periodic oscillations with growing ampli-
tude. An intuitive picture for such discreteness-induced
instabilities has been presented, and the novelty of these
instabilities for the discrete soliton bearing models has
been emphasized.
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